
Photon: A FastQuery Engine for Lakehouse Systems
Alexander Behm, Shoumik Palkar, Utkarsh Agarwal, Timothy Armstrong, David Cashman,

Ankur Dave, Todd Greenstein, Shant Hovsepian, Ryan Johnson, Arvind Sai Krishnan,
Paul Leventis, Ala Luszczak, Prashanth Menon, Mostafa Mokhtar, Gene Pang, Sameer Paranjpye,

Greg Rahn, Bart Samwel, Tom van Bussel, Herman van Hovell, Maryann Xue, Reynold Xin,
Matei Zaharia

photon-paper-authors@databricks.com
Databricks Inc.

ABSTRACT
Many organizations are shifting to a data management paradigm
called the “Lakehouse,” which implements the functionality of
structured data warehouses on top of unstructured data lakes.
This presents new challenges for query execution engines. The
engine needs to provide good performance on the raw uncurated
datasets that are ubiquitous in data lakes, and excellent perfor-
mance on structured data stored in popular columnar file formats
like Apache Parquet. Toward these goals, we present Photon, a
vectorized query engine for Lakehouse environments that we devel-
oped at Databricks. Photon can outperform existing warehouses on
SQL workloads and also supports the Apache Spark API. We discuss
the design choices we made in Photon (e.g., vectorization vs. code
generation) and describe its integration with our existing SQL and
Apache Spark runtimes, its task model, and its memory manager.
Photon has accelerated some customer workloads by over 10× and
has recently allowed Databricks to set a new audited performance
record for the official 100TB TPC-DS benchmark.

CCS CONCEPTS
• Information systems → Database management system en-
gines; Main memory engines; Database query processing.

KEYWORDS
main memory engines, query processing, vectorization

ACM Reference Format:
Alexander Behm, Shoumik Palkar, Utkarsh Agarwal, Timothy Armstrong,
David Cashman, AnkurDave, ToddGreenstein, ShantHovsepian, Ryan John-
son, Arvind Sai Krishnan, Paul Leventis, Ala Luszczak, Prashanth Menon,
Mostafa Mokhtar, Gene Pang, Sameer Paranjpye, Greg Rahn, Bart Samwel,
Tom van Bussel, Herman van Hovell, Maryann Xue, Reynold Xin, Matei Za-
haria . 2022. Photon: A Fast Query Engine for Lakehouse Systems. In Proceed-
ings of the 2022 International Conference on Management of Data (SIGMOD
’22), June 12–17, 2022, Philadelphia, PA, USA. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3514221.3526054

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00
https://doi.org/10.1145/3514221.3526054

1 INTRODUCTION
Enterprises today store a vast majority of their data in scalable,
elastic data lakes such as Amazon S3, Azure Data Lake Storage,
and Google Cloud Storage. These data lakes hold raw, often un-
curated datasets in open file formats such as Apache Parquet or
Delta Lake [4, 18], and can be accessed with a variety of engines,
such as Apache Spark and Presto [49, 58], to run workloads ranging
from SQL to machine learning. Traditionally, for the most demand-
ing SQL workloads, enterprises have also moved a curated subset
of their data into data warehouses to get high performance, gov-
ernance and concurrency. However, this two-tier architecture is
complex and expensive, as only a subset of data is available in the
warehouse, and this data may be out of sync with the raw data due
to issues in the extract, transform and load (ETL) process [19].

In response, many organizations are shifting to a data manage-
ment architecture called the Lakehouse [19], which implements data
warehouse features such as governance, ACID transactions and rich
SQL support directly over a data lake. This single-tier approach
promises to simplify data management, as users can govern and
query all their data in a uniform way, and there are fewer ETL
steps and query engines to manage. Recently, new storage layers
such as Delta Lake [18] have enabled many of the management fea-
tures of data warehouses—such as transactions and time travel—on
data lakes, and have provided useful tools for optimizing storage
access, such as data clustering and data skipping indices. However,
maximizing the performance of Lakehouse workloads requires op-
timizing not only the storage layer, but also query processing.

This paper presents Photon, a new vectorized query engine we
developed at Databricks for Lakehouse workloads that can exe-
cute queries written in either SQL or in Apache Spark’s DataFrame
API [20]. Photon has already executed tens of millions of queries
from hundreds of customers. With Photon, our customers have
observed average speedups of 3× over our previous Databricks
Runtime (an optimized engine based on Apache Spark), and maxi-
mum speedups of over 10×. Databricks also set an audited 100TB
TPC-DS world record in November 2021 with Photon on a Lake-
house system using the Delta Lake format on Amazon S3, showing
that state-of-the-art SQL performance is attainable with open data
formats and commodity cloud storage.

Designing Photon required tackling two key challenges. First, un-
like a traditional data warehouse engine, Photon needed to perform
well on raw, uncurated data, which can include highly irregular
datasets, poor physical layout, and large fields, all with no useful
clustering or data statistics. Second, we wanted Photon to support,
and be semantically compatible with, the existing Apache Spark

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2326

https://doi.org/10.1145/3514221.3526054
https://doi.org/10.1145/3514221.3526054

DataFrame API that is widely used for data lake workloads. This
was critical to deliver the Lakehouse promise of a single query en-
gine with uniform semantics for all of an organization’s workloads,
but created difficult engineering and testing challenges. Of course,
subject to these two challenges, we wanted Photon to be as fast as
possible. We describe how these two challenges led us to Photon’s
design: a vectorized engine written in C++, that interfaces cleanly
with Apache Spark’s memory manager and that includes a variety
of optimizations for raw, uncurated data.
Challenge 1: Supporting raw, uncurated data. The Lakehouse
environment challenges query engines with a greater variety of data
than traditional SQL warehouses. On one end of the spectrum, for
the “clean" tabular datasets in the Lakehouse, users take great care
to clean and organize their data for read performance by designing
schemas with constraints, statistics, and indices. On the other end
of the spectrum, uncurated raw data may have sub-optimal data
layouts like small files, many columns, sparse or large data values,
and no useful clustering or statistics—but many users also wish to
query such data. In addition, strings are convenient and prevalent
in raw data, even to represent numeric data like integers and dates.
This data is also frequently denormalized, so string columns may
additionally use placeholder values for unknown or missing values
instead of NULL, and schema information such as nullability or
string encoding (e.g., ASCII vs. UTF-8) is typically absent.

As a result, an execution engine for the Lakehouse must have a
design that is flexible enough to deliver good performance on arbi-
trary uncurated data, and excellent performance on data following
Lakehouse best practices—multidimensional clustering [19], rea-
sonable file sizes, and appropriate data types, for example—across a
variety of use cases such as data science, ETL, ad hoc SQL, and BI.

We addressed this challenge with two early design decisions.
First, we chose to build the engine using the vectorized-interpreted
model in lieu of code generation, unlike Spark SQL’s choice to use
code generation [20]. Vectorized execution enabled us to support
runtime adaptivity, wherein Photon discovers, maintains, and ex-
ploits micro-batch data characteristics with specialized code paths
to adapt to the properties of Lakehouse datasets for optimal per-
formance. For example, Photon runs optimized per-batch code for
columns that rarely have NULL values, or mostly-ASCII string data.

We also observed other engineering advantages with the vec-
torized approach. Although we found some scenarios where the
code generation model delivers better performance (e.g., complex
conditional expressions), our experience while prototyping both
approaches and from working on other engines was that the vec-
torized model was easier to build, profile, debug, and operate at
scale. This allowed us to invest more time in specializations that
narrowed the performance gap between the two. Preserving abstrac-
tion boundaries such as query operators also facilitates collecting
rich metrics to help end users better understand query behavior.

Second, we chose to implement Photon in a native language
(C++) rather than following the existing Databricks Runtime en-
gine, which used the Java VM. One reason for this decision was that
we were hitting performance ceilings with the existing JVM-based
engine. Another reason for switching to native code was internal
just-in-time compiler limits (e.g., on method size) that created per-
formance cliffs when JVM optimizations bailed out. Finally, we

found that the performance of native code was generally easier
to explain than the performance of the JVM engine, since aspects
like memory management and SIMD were under explicit control.
The native engine not only delivered a performance boost, but also
allowed us to handle large record sizes and query plans more easily.
Challenge 2: Supporting existing Spark APIs. Organizations
already run a variety of applications over their data lakes, ranging
from ETL workloads to advanced analytics such as machine learn-
ing. On the Databricks platform, these workloads leverage Apache
Spark’s APIs, using a mix of DataFrame or SQL code that goes
through a SQL optimizer and user-defined code that is treated as a
black box. To accelerate these existing workloads and ensure that
SQL workloads on Databricks experience the same semantics as
Spark workloads, we designed Photon to integrate with the Spark
engine and to support Spark workloads (with a mix of SQL opera-
tors and UDFs) as well as pure SQLworkloads. This was challenging
because Photon had to be able to share resources with user-defined
code (as happens in Spark), and had to match the semantics of
Apache Spark’s existing Java-based SQL engine.

To address this challenge, Photon integrates closely with the
Apache Spark-based Databricks Runtime (DBR). DBR is a fork of
Apache Spark that provides the same APIs, but contains improve-
ments to reliability and performance. Photon fits into DBR as a new
set of physical operators that can be used for part of the query plan
by DBR’s query optimizer, and that integrate with Spark’s memory
manager, monitoring, and I/O systems. By integrating with DBR
at the operator level, customers can continue to run their work-
loads unmodified and obtain the benefits of Photon transparently.
Queries can partially run in Photon and fall back to Spark SQL for
unsupported operations, while Photon features are being contin-
uously added to reduce these transitions. This ability to partially
roll out Photon has given us valuable operational experience in
using Photon in the field. Photon also plugs into features like live
metrics, so queries that use Photon will show up in the Spark UI
just as before. Finally, we rigorously test Photon to ensure that
its semantics do not diverge from Spark SQL’s, thus preventing
unexpected behavior changes in existing workloads.

2 BACKGROUND
To provide context for how Photon fits into a production Lakehouse
system, this section describes Databricks’ Lakehouse product.

2.1 Databricks’ Lakehouse Architecture
Databricks’ Lakehouse platform consists of four main components:
a raw data lake storage layer, an automatic data management layer
to enable warehouse-style transactions and features such as roll-
back, an elastic execution layer to execute analytics workloads, and
a user interface through which customers interact with their data.
Data Lake Storage. Databricks’ platform decouples data storage
from compute, allowing customers to choose their own low-cost
storage provider (e.g., S3, ADLS, GCS). This design prevents cus-
tomer data lock-in, and also avoids expensive migrations, as cus-
tomers can connect Databricks to their existing large datasets in
cloud storage. Databricks accesses customer data using connectors
between a compute service and the data lake. The data itself is
stored in open file formats such as Apache Parquet.

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2327

User Queries (DataFrame APIs, SQL)

Join

Filter

FileScan

Driver Executor

Query analyzer
and optimizer

Task Scheduler CPU1

CPU2 CPU3

CPU0

Photon
Task

Databricks Runtime
Clusters

df.select($”col1”).filter($”col2” > 0).join(df2)

SELECT * FROM t1, t2 WHERE col2 > 0 AND t1.id = t2.id

Metadata

Parquet
data files

User cloud storage

Databricks Runtime

Figure 1: Databricks’ execution layer. Photon runs as part of the Databricks Runtime, which executes queries on a distributed
cluster of public cloud VMs. Within these clusters, Photon executes tasks on partitions of data on a single thread.

Automatic Data Management. A majority of Databricks cus-
tomers have migrated their workloads to use Delta Lake [18], an
open source ACID table storage layer over cloud object stores. Delta
Lake enables warehouse-style features such as ACID transactions,
time travel, audit logging, and fast metadata operations over tabular
datasets. Delta Lake stores both its data and metadata as Parquet.

In contrast with Delta Lake, traditional warehouses ingest cus-
tomer data into a proprietary format in the name of query perfor-
mance [13, 21]. With Delta Lake, we have found that with the right
access layer, many of the storage optimizations in proprietary data
warehouses are also possible with open file formats. Databricks
implements several other optimizations, such as automatic data
clustering and caching, on top of the Delta Lake format to further
improve performance, e.g., by clustering records based on common
query predicates to enable data skipping and reduce I/O [18].
Elastic Execution Layer. Figure 1 illustrates Databricks’ execu-
tion layer. This layer implements the “data plane" on which all data
processing runs. The execution layer is responsible for executing
both “internal” queries such as auto data-clustering and metadata
access and customer queries such as ETL jobs, machine learning,
and SQL. At Databricks, the execution layer reads and processes
exabytes of data per day. As a result, this component must be scal-
able, reliable, and deliver excellent performance in order to reduce
costs for our customers and enable interactive data analysis. Pho-
ton fits into this execution layer by handling single-threaded query
execution on each partition of the data processed.

The execution layer uses cloud computing VMs on AWS, Azure
and Google Cloud. Databricksmanages these VMs at the granularity
of clusters, which contain a centralized driver node that orchestrates
the execution and one or more executor nodes that read and process
data. These VMs run an execution framework that handles user
queries (Databricks Runtime), as well as management software to
handle log collection, access control, etc. We discuss the Databricks
Runtime in more detail in Section 2.2.

2.2 The Databricks Runtime
The Databricks Runtime (DBR) is the component that handles all
query execution (Figure 1). It provides all of Apache Spark’s APIs,
but contains several performance and robustness improvements on
top of the open source codebase. Photon is positioned at the lowest
level of DBR, and handles single-threaded task execution within the
context of DBR’s multi-threaded shared-nothing execution model.

Applications submitted to DBR are called jobs, and each job
is broken up into stages. A stage represents a part of a job that
reads one or more files or data exchanges and ends with either a
data exchange or a result. Stages themselves are broken up into
individual tasks, which execute the same code on different partitions
of data. Stage boundaries in DBR are blocking, i.e., the next stage
starts after the previous stage ends. This allows fault tolerance
or adaptive execution to occur by replaying stages or re-planning
queries at stage boundaries.

DBR uses a single driver node for scheduling, query planning,
and other centralized tasks. The driver node manages one or more
executor nodes, each of which runs a task execution process to
scan data, process it, and produce results. This process is multi-
threaded, and contains a task scheduler and a thread pool to execute
independent tasks submitted by the driver in parallel.

SQL queries share the same execution framework as all other
queries, and can constitute one or more jobs. For example, file
metadata queries and SQL sub-queries may all execute as separate
jobs within the same overall query. The driver is responsible for
converting SQL text or a DataFrame object constructed using the
Apache Spark’s DataFrame APIs into a query plan.

A query plan is a tree of SQL operators (e.g., Filter, Project,
Shuffle) that maps to a list of stages. After query planning, the
driver launches tasks to execute each stage of the query. Each
task runs uses the in-memory execution engine to process data.
Photon is an example of such an execution engine; it supersedes
the previous engine based on Apache Spark SQL.

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2328

SELECT

upper(c_name), sum(o_price)

FROM

customer, orders

WHERE

o_shipdate > '2021-01-01' AND

customer.c_age > 25 AND

customer.c_orderid = orders.o_orderid

GROUP BY

c_name

Listing 1: An example SQL query. This query can benefit
from both storage optimizations such as file clustering, as
well as runtime engine optimizations that Photon provides,
such as SIMD vectorized execution.

2.3 Example: End-to-end SQL Query Execution
Consider the SQL query in Listing 1, which a user submits to
Databricks. The query executes against two logical tables customer
and orders, both backed by Delta files in the user’s cloud account.

The Databricks service will first route the query to a cluster’s
driver node. The driver is responsible for creating a query plan,
including logical optimizations such as operator re-ordering and
physical planning such as choosing join strategies. For the example
query, several optimizations apply: if the orders table is partitioned
by date, we can prune partitions to avoid scanning unnecessary
data. If the data is clustered, we may be able to skip additional files if
the predicates on age are known not to match. Databricks supports
both these optimizations in its Lakehouse by providing features
such as Hilbert clustering [32]. The Delta format additionally makes
metadata operations such as listing the files for the latest snapshot
of a table fast [18].

Once the driver chooses the files to scan and finalizes a physical
query plan, the driver converts the query plan to executable code via
the Apache Spark RDD API, and sends the serialized code to each
executor node. The executors run this code as tasks on partitions of
the input data. These tasks fetch data from the user’s cloud storage
(or from a local SSD cache, if the user has executed a query over this
table before), and then evaluate the remaining query operators.

3 EXECUTION ENGINE DESIGN DECISIONS
In this section, we first provide an overview of Photon’s architecture.
Then, we dive into the main design decisions in the query engine.

3.1 Overview
Photon is a native (i.e., implemented in C++) execution engine that
is compiled into a shared library and invoked from DBR. Photon
runs as part of a single-threaded task in DBR, within an executor’s
JVM process. Like DBR, Photon structures a SQL query as as tree
of operators, where each operator uses a HasNext()/GetNext() API
to pull batches of data from its child. This API is also used to pull
data from operators that are implemented in Java, using the Java
Native Interface [8]. Similarly, operators on top of Photon can pull
data from it using this same API. Photon also differs from the
Java operators because it operates over columnar data, and uses

interpreted vectorization instead of code generation to implement
its operators: these differencesmean that the in-memory data layout
that Photon and the Java operators expect may be different. In the
remainder of this section, we motivate these differences between
the existing and new engines in more detail.

3.2 JVM vs. Native Execution
An early design choice we made was to move away from the JVM
and implement the new execution engine in native code. This was
a significant decision because the existing Databricks Runtime is
JVM-based, so shifting to a native engine that integrates with the
rest of the runtime was a challenging endeavor.

Our decision to move away from a JVM-based engine was rooted
in the observation that our workloads were becoming CPU-bound,
and that improving the performance of the existing engine was
increasingly difficult. Several factors contributed to this. First, low-
level optimizations such as local NVMe SSD caching [38] and auto-
optimized shuffle [55] have significantly reduced IO latency. Sec-
ond, techniques such as data clustering, enabled by Delta Lake,
allow queries to more aggressively skip unneeded data via file prun-
ing [32], further reducing IO wait times. Finally, the Lakehouse has
introduced new workloads that require heavy data processing over
un-normalized data, large strings, and unstructured nested data
types: this further stresses in-memory performance.

The consequence of this was that the in-memory execution car-
ried out by JVM-based execution engine was becoming more of
a bottleneck, but squeezing more performance out of it requiring
heavy knowledge of JVM internals to ensure that the JIT compiler
produced optimal code (e.g., loops that used SIMD instructions).
Anecdotally, the only engineers that regularly updated the gener-
ated Java code were ones that had worked on JVM internals in the
past. In addition, we found that the lack of control over lower-level
optimizations such as memory pipelining and custom SIMD kernels
also contributed to a performance ceiling in the existing engine.

We also found that we were also starting to hit performance cliffs
within the JVM on queries in production. For example, we observed
that garbage collection performance was seriously impacted on
heaps greater than 64GB in size (a relatively small limit given the
memory sizes of modern cloud instances). This required us to use
manually managed off-heap memory within even the JVM-based
execution engine, leading to code that wasn’t necessarily easier to
write or maintain compared to code written in a native language.
Similarly, the existing execution engine, which performs Java code
generation [54], was constrained by limits on generated method
size or code cache size and would need to fall back to a far slower
Volcano-style [31] interpreted code path. For wide tables (e.g., 100s
of columns, common in the Lakehouse), we hit this limit regularly
in production deployments. In all, after evaluating the engineering
effort it would require to sidestep the performance ceilings and
scalability limitations of the JVM, we chose to implement a native
query execution runtime.

3.3 Interpreted Vectorization vs. Code-Gen
Modern high performance query engines predominantly follow
one of two designs: either an interpreted vectorized design like in
the MonetDB/X100 system [23], or a code-generated design like the

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2329

ones used in Spark SQL, HyPer [41], or Apache Impala [3]. In short,
interpreted vectorized engines use a dynamic dispatch mechanism
(e.g., virtual function calls) to choose the code to execute for a given
input but process data in batches to amortize virtual function call
overhead, enable SIMD vectorization, and better utilize the CPU
pipeline and memory hierarchy. Code-generated systems do away
with virtual function calls by using a compiler at runtime to produce
code specialized for the query.

When prototyping our native engine, we tried native imple-
mentations of both of the above approaches, using Weld [45] as
a starting point for the code-generating approach. At the end, we
chose to proceed with the vectorized approach for a combination
of technical and practical reasons, described below.
Easier to develop and scale. One early observation for the code
generation approach was that it was harder to build and debug.
Since the engine generates the executing code at runtime, we would
manually need to inject code that would make finding issues easier.
In addition, we found that existing tooling (e.g., debuggers, stack
trace tools, etc.) were difficult to use without manually adding
instrumentation. In contrast, the interpreted approach was “just
C++”, for which existing tools are highly tailored. Techniques such
as print debugging were also much easier in the interpreted engine.

Interestingly, we found that a majority of the work in using
a code generating runtime in the context of a larger system was
around adding tooling and observability rather than building the
compiler. For example, Weld had a few performance issues that
we needed to address before comparing the two approaches, but
debugging these issues was difficult without tools such as perf.
Anecdotally, it took our engineers two months to prototype aggre-
gation with a code-generating engine, and a couple weeks with the
vectorized engine.
Observability is easier. Code generation typically eliminates in-
terpretation and function call overheads by collapsing and inlining
operators into a small number of pipelined functions. Although
this is great for performance, it makes observability difficult. For
example, it is challenging to efficiently report metrics on how much
time is spent within each query operator given that the operator
code may be fused into a row-at-a-time processing loop. The vec-
torized approach maintains the abstraction boundaries between
operators and amortizes overhead by processing batches of data at
a time: each operator can thus maintain its own set of metrics. This
is especially useful after deploying the engine to customers, since
these metrics are the primary interface to debugging performance
issues in customer workloads where queries may not be shareable
or directly executable by the engine developers.
Easier to adapt to changing data. As we discuss in §4.6, Photon
can adapt to batch-level properties by choosing a code-path at run-
time. This is particularly important in the Lakehouse context, since
traditional constraints and statistics may not be available for all
classes of queries. An interpreted-vectorized execution model made
adaptivitymuch easier, since dynamic dispatch is already fundamen-
tal to the engine. To achieve the same effect with a code-generating
engine, we would have had to either compile a prohibitive number
of branches at runtime or re-compile parts of the query dynami-
cally, which would impact query execution time, memory usage, etc.
Although this is certainly possible, it incurs additional compilation

time and startup overhead. In fact, even HyPer [41], the bench-
mark for code-generating engines today, includes an interpreter to
circumvent these costs under certain scenarios.
Specialization is still possible. Code-generation has clear perfor-
mance advantages in some scenarios. For example, complex trees
of expressions may be simplified using classic compiler optimiza-
tions such as common sub-expression elimination, unused column
references may automatically be pruned via dead-store elimination,
and problems such as sparse batches of data are non-issues since
tuples are processed without interpretation overhead.

Despite these advantages, we found that in many cases, we could
get similar benefits with our vectorized engine by creating special-
ized fused operators for the most common cases. For example, we
observed that the between expression, which evaluates col >= left

and col <= right, is common in our customers’ queries but could
lead to high interpretation overhead if expressed as a conjunction.
We thus created a special fused operator for it. In general, we felt
that the trade-off in complexity allowed us to divert engineering
time for these kinds of specializations, which has allowed us to
close the performance gap between the two models in many cases.

3.4 Row vs. Column-Oriented Execution
A third design choice we made was to default to a columnar in-
memory data representation in Photon rather than adopting Spark
SQL’s row-oriented data representation. In a columnar represen-
tation, values of a particular column are stored contiguously in
memory, and a row is logically assembled by accessing a specific
element within each column.

The advantages of columnar execution have been detailed in
prior works [35, 51]. To summarize, columnar layouts are more
amenable to SIMD, enable more efficient data pipelining and pre-
fetching by enabling operators to be implemented as tight loops,
and can lead to more efficient data serialization for exchanges and
spilling. An additional advantage in the Lakehouse context is that
our execution engine predominantly interfaces with columnar file
formats such as Parquet: a columnar representation can thus skip
a possibly expensive column-to-row pivoting step when scanning
data. Additionally, we can maintain dictionaries to reduce memory
usage, which is important especially for string and other variable-
length data (again, common in our Lakehouse setting). Finally,
writing columnar data is also easier with a columnar engine.

In practice, Photon does pivot columns to rows in certain scenar-
ios. For example, we generally buffer data in data structures such
as hash tables as rows, since storing data as columns here requires
expensive random accesses when performing operations such as
key comparisons during hash table probing.

3.5 Partial Rollout
A final design choice was to enable partial rollout of the new execu-
tion engine. This meant that the new engine needed to integrate not
only with the execution framework (i.e., task scheduling, memory
management, etc.), but also the existing SQL engine.

This decision was made for entirely practical reasons. The exist-
ing SQL engine, which is based on open-source Apache Spark, is a
moving target. The open source community actively contributes
improvements, features, and bug fixes regularly. For example, in

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2330

10

11

??

0

0

1

“hello”

??

“photon”

0

1

0

0

2

position
list

col0: int col1: string

data nulls data nulls

Figure 2: A column batch in Photon. This batch represents
the schema {int, string}with the tuples (10, “hello”) and (null,
“photon”). Data at inactive row indices may still be valid.

July 2021, the open source Spark project had 321 commits, of which
47% were to the SQL package. As a result, building a new execution
engine that supports all the features of the existing one would
simply be impossible. The consequence of this is a design that can
partially execute a query in the new engine, and then gracefully fall
back to the old engine for features that are thus far unsupported.

The next two sections describe how the design decisions outlined
in this section are realized in our implementation. §4 describes
our native, vectorized, column-oriented execution engine, Photon,
in more detail. §5 discusses the specific challenges of integrating
Photon with our existing JVM-based framework and execution
engine, and how we have enabled partial rollout.

4 VECTORIZED EXECUTION IN PHOTON
In this section, we describe the implementation of Photon’s vector-
ized columnar execution engine.

4.1 Batched Columnar Data Layout
Photon represents data in a columnar data format, where each
column value is stored contiguously in memory. Groups of columns
(which logically form a group of rows) are broken and processed in
batches to bound memory usage and exploit cache locality.

The basic unit of data in Photon is thus a single column holding
a single batch worth of values, called a column vector. In addition
to a contiguous buffer of values, the column vector holds a byte
vector to indicate the NULL-ness of each value. Column vectors
can also hold batch-level metadata such as string encoding.

A column batch is a collection of column vectors, and represents
rows. Figure 2). In addition to holding a column vector for each
column in the row, a column batch contains a position list data
structure, which stores the indices of the rows in batch that are
“active” (i.e., have not been filtered out and should be considered by
expressions, operators, etc.). Accessing a row in the column batch
requires indirection through the position list, as shown in Listing 2.

Another possible design for designating rows as active vs. in-
active is a byte vector. This design is more amenable to SIMD,
but requires iterating over all rows even in sparse batches. Our
experiments showed that in most cases this led to worse overall
performance for all but the simplest queries, since loops must iter-
ate over O(batch size) elements instead of O(active rows) elements.
Recent work confirms our conclusions [42].

Data in Photon flows through operators (e.g., Project, Filter), at
the granularity of column batches. Each operator receives a column
batch from its child and produces one or more output batches.

4.2 Vectorized Execution Kernels
Photon’s columnar execution is built around the concept of exe-
cution kernels, which are functions that execute highly optimized
loops over one or more vectors of data. This idea was first proposed
in the X100 system [23]. Almost all operations on the data plane
are implemented as kernels. For example, expressions, probes into
a hash table, serialization for data exchange, and runtime statistics
calculation are all implemented as kernels at the lowest level. These
kernels can sometimes use hand-coded SIMD intrinsics, but often
we rely on the compiler to auto-vectorize the kernel (and provide
hints such as RESTRICT annotations [1] on the inputs to aid in auto-
vectorization). Kernels can be specialized for different input types
using C++ templates.

Photon invokes operators and expressions at the granularity of
vectors. Each kernel takes vectors and the column batch position list
as input and produces a vector as output. Operators pass vectors
among to other operators until eventually being passed out of
Photon for external use (e.g., by Spark). Listing 2 shows an example
kernel, for an expression that computes the square root of a value.

4.3 Filters and Conditionals
Filters in Photon are implemented by modifying the position list of
a column batch. A filtering expression takes column vectors as input
and returns a position list (which is a subset of the input position
list) as output. To implement conditional expressions such as CASE
WHEN, we modify the position list so only some rows are “turned
on” within the kernel invocation for each branch, while writing
to the same output vector. Note that this means that modifying
inactive rows (e.g., to enable SIMD) is disallowed, since inactive
row positions may still contain valid data.

4.4 Vectorized Hash Table
Unlike a standard scalar-access hash table, Photon’s hash table is
optimized for vectorized access. Lookups to the hash table occur
in three steps. First, a hash function is evaluated on a batch of
keys using a hashing kernel. Next, a probe kernel uses the hash
values to load pointers to hash table entries (entries in the hash
table are stored as rows, so a single pointer can represent composite
keys). Finally, the entries in the hash table are compared against the
lookup keys column-by-column, and a position list is produced for
non-matching rows. Non-matching rows continue probing the hash
table by advancing their bucket index for filled buckets according
to the probing strategy (we use quadratic probing).

Each step benefits from vectorized execution. The hashing and
key comparison benefit from SIMD. Since the probe step issues
random memory accesses, it also benefits from vectorization. The
independent loads are close to each other in the kernel code, and can
therefore be parallelized by the hardware. Note that other designs
might be able to achieve similar effects via software prefetching, but
in our experience, manual prefetching is difficult to tune and tends
to have different optimal configurations for different hardware.

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2331

template <bool kHasNulls, bool kAllRowsActive>

void SquareRootKernel(const int16_t* RESTRICT pos_list,

int num_rows, const double* RESTRICT input,

const int8_t* RESTRICT nulls, double* RESTRICT result) {

for (int i = 0; i < num_rows; i++) {

// branch compiles away since condition is

// compile-time constant.

int row_idx = kAllRowsActive ? i : pos_list[i];

if (!kHasNulls || !nulls[row_idx]) {

result[row_idx] = sqrt(input[row_idx]);

}

}

}

Listing 2: A Photon kernel that is specialized on the pres-
ence of NULLs and inactive rows. Branches over compile-
time constant template parameters are optimized away.

4.5 Vector Memory Management
Memory management is an important consideration in any exe-
cution engine. To prevent expensive OS-level allocations, Photon
allocates memory for transient column batches using an internal
buffer pool, which caches allocations and allocates memory using
a most-recently-used mechanism. This keeps hot memory in use
for repeated allocations for each input batch. Since the query oper-
ators are fixed during execution, the number of vector allocations
required to process a single input batch end-to-end is fixed.

Variable length data (e.g., buffers for strings) is managed sepa-
rately, using an append-only pool that is freed before processing
each new batch. Memory used by this pool is tracked by a global
memory tracker, so the engine could in theory adjust the batch size
if it encounters large strings that it cannot accommodate.

Large persistent allocations that outlive any single batch (e.g.,
for aggregations or joins) are tracked separately using an external
memory manager. We discuss these allocations in more detail in
§5. We have found fine-grained memory allocation to be valuable
because, unlike the Spark SQL engine, we can more robustly handle
large input records that are frequent in our Lakehouse setting.

4.6 Adaptive Execution
A major challenge in the Lakehouse context is the lack of sta-

tistics, metadata, or normalization of the query input. While some
tables will have statistics available for planner decisions, others
will have no information beyond the schema. In addition, NULL
data is common, and expressions that manipulate and normalize
strings also appear frequently. The execution engine thus bears the
burden of efficient execution on queries over such data. To solve
this, our engine supports batch-level adaptivity. In short, Photon
can at runtime build metadata about a batch of data and use it to
optimize its choice of execution kernel.

Every execution kernel in Photon can adapt to at least two vari-
ables: whether there are any NULLs in the batch, and whether there
are any inactive rows in the batch. Lack of NULLs allows Photon
to remove branching, which improves performance. Similarly, if
there are no inactive rows in a batch, Photon can avoid the indirect

FileScan

Filter

Shuffle

FileScan Adapter

PhotonFilter

PhotonShuffle

TransitionToObject

JVM
Execution

JVM
Execution

Photon
Execution

ToObject

Figure 3: A Spark SQL plan converted to a Photon plan.

lookup via the position list, which again improves performance and
enables SIMD. Listing 2 shows an example of these specializations.

Photon specializes several other kernels on a case-by-case basis.
For example, many string expressions can be executed with an opti-
mized code path if the strings are all ASCII encoded (as opposed to
general UTF-8). Photon can thus compute and store metadata about
ASCII-ness within a column vector and use this information to
choose the correct kernel at runtime. As another example, Photon
can selectively choose to compact batches that are sparse at run-
time in order to improve performance. This is especially impactful
when probing large hash tables using a vectorized API, since dense
batches can better exploit memory parallelism by issuing loads
from the hash table in parallel; on the other hand, sparse batches
incur high memory latency without saturating memory bandwidth.

We have also explored adaptivity in other scenarios, e.g., adaptive
shuffle encoding by finding patterns in user data at runtime. For
example, we found that many users encode unique identifiers as
36-character strings instead of (an equivalent) 128-bit integer. We
have also observed numeric data (e.g., integers) encoded as strings,
which can be serialized more efficiently using a binary format.

5 INTEGRATIONWITH DATABRICKS
RUNTIME

Photon integrates with the Databricks Runtime (DBR). Unlike a
traditional data warehouse, Photon shares resources with all other
workloads that execute over DBR and the Lakehouse storage archi-
tecture, ranging from data cleaning for machine learning models
to ETL. In addition, Photon co-exists with the old Spark SQL-based
execution engine for queries with operators that do not yet support
the new execution engine. For these reasons, Photon must integrate
tightly with DBR’s query planner and memory manager.

5.1 Converting Spark Plans to Photon Plans
To integrate with the legacy Spark SQL-based engine, we convert
a physical plan that represents execution using the legacy engine
into one that represents execution with Photon. This transforma-
tion is done via new rule in Catalyst [20], Spark SQL’s extensible
optimizer. A Catalyst rule is a list of pattern matching statements
and corresponding substitutions that are applied to a query plan. If
a pattern matches on any query plan node, that node is replaced
with the corresponding substitution. Figure 3 shows an example.

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2332

The rule proceeds as follows. First, wewalk the input plan bottom
up, starting at file scan nodes, and map each supported legacy
engine node to a Photon node. When we see a node that Photon
does not support, we insert a transition node that converts the
columnar Photon format to the row-wise format that the legacy
engine uses. We do not transform nodes starting in the middle of
the plan to avoid regressions from too many column-to-row pivots.
We also add an adapter node between the file scan and the first
Photon node: this maps the legacy scan input to Photon columnar
batches, but is zero-copy since the scan produces columnar data.

5.2 Executing Photon Plans
After query planning, DBR launches tasks to execute the stages of
the plan. In a task with Photon, the Photon execution node first
serializes the Photon part of the plan into a Protobuf [6] message.
This message is passed via the Java Native Interface (JNI) [8] to the
Photon C++ library, which deserializes the Protobuf and converts
it into a Photon-internal plan. Internally, the execution plan in
Photon looks similar to its DBR counterpart: each operator is a
node with a HasNext()/GetNext() interface, and data is pulled (at
the granularity of column batches) by a parent node from the child
node. Note that Photon runs in the JVM process and communicates
with the Java runtime using JNI.

For plans that end with a data exchange, Photon writes a shuffle
file that conforms to Spark’s shuffle protocol, and passes metadata
about the shuffle file to Spark. Spark then performs the shuffle using
this metadata, and a new Photon task (in a new stage) reads the
relevant partitions from the shuffle. Since we use a custom data
serialization format that is not compatible with Spark’s format, a
Photon shuffle write must be accompanied by a Photon shuffle read.
Adapter node to read Scan data. The leaf node in a Photon plan
is always an “adapter” node. The Photon adapter node works by
taking columnar data produced by Spark’s scan node and passing
pointers to this data to Photon. Within Photon, the adapter node’s
GetNext() method makes a C++ to Java JNI call that passes a list
of native pointers to the JVM. We pass two pointers per column:
one to represent the vector of column values, and one to represent
the NULL values for each column value. On the Java side, the
scan node directly produces columnar data that is stored in off-
heap memory via the open-source OffHeapColumnVector [9] class
in Spark. Like Photon, this class stores values as primitives back-
to-back in off-heap memory, and stores NULLs as an off-heap byte
array (one byte per value). Thus, the adapter node just needs to take
the pointers provided by Photon and point them to the off-heap
column vector memory without copying. We make one JNI call per
batch to consume the scan data. We note that, in our measurements,
the overhead of making a JNI call is comparable to a C++ virtual
function call (roughly 23ns per call).
Transition node to pass Photon data to Spark. The last node
in a Photon plan is a “transition”node. Unlike the adapter node, the
transition node must pivot columnar data to row data so the row-
wise legacy Spark SQL engine can operate over it. Since Apache
Spark’s scan always produces columnar data when reading colum-
nar formats, we note that one such pivot is required even without
Photon. Since we only convert plans to Photon starting at the scan
node, adding a single pivot on top of a Photon plan does not cause

regressions vs. Spark (both the Spark plan and Photon plan each
have a single pivot). However, if we were to eagerly convert arbi-
trary parts of the plan to use Photon, we could have an arbitrary
number of pivots, which could lead to regressions. Today, we elect
to be conservative and choose not to do this. In the future, we may
investigate weighing this tradeoff. of the speedup Photon would
provide vs. the slowdown caused by adding an additional column-
to-row pivot.

5.3 Unified Memory Management
Photon and Apache Spark share the same cluster and thus must
have a consistent view of memory and disk usage to avoid being
OOM-killed by the OS or the JVM. As a result, Photon hooks into
Apache Spark’s memory manager.

To handle this, we separate the concept of memory reservations
from allocations in Photon. A memory reservation asks for memory
from Spark’s unified memory manager. Like all requests to the
memory manager, this can cause a spill, where Spark asks some
memory consumer to release memory to satisfy a new request. Pho-
ton hooks into this memory consumer API, so Spark can ask Photon
to spill data on behalf of other memory-consuming operators that
are executing (e.g., a sort task in Spark may ask a Photon operator
to spill). Similarly, Photon can make reservations that cause other
Spark operators to spill, or cause Photon itself to spill (leading to
a “recursive spill” where one Photon operator spills memory on
behalf of another one). This differs slightly from many other data-
base engines, where operators are given a fixed memory budget
and can only “self-spill.” Spilling is dynamic because we often do
not have information on how much data an operator will consume,
especially if SQL operators are co-existing with user-defined code
that also reserves memory.

We use the same policy as open source Apache Spark to deter-
mine which operator to spill. To summarize, if we need to spill 𝑁
bytes to satisfy a memory reservation request, we sort the memory
consumers from least to most allocated memory, and spill the first
consumer that holds at least 𝑁 bytes. The rationale behind this is
that we minimize the number of spills and avoid spilling more data
than necessary.

After reserving memory, Photon can allocate memory safely
without spilling. Allocation is purely local to Photon: Spark only
accounts for the memory that Photon asks for. In spilling operators
such as hash join and grouping aggregation the processing of an
input batch is thus broken up into two phases: a reservation phase
where memory is acquired for the new input batch and spilling
is handled, and an allocation phase where transient data can be
produced since no spilling can occur. This flexible spilling mech-
anism has been critical in the Lakehouse context, where queries
often exceed the available memory.

5.4 Managing On-heap vs. Off-heap memory
Both DBR and Apache Spark support requesting off-heap and on-
heap memory from the memory manager. To manage off-heap
memory, the Spark cluster is configured with a static “off-heap size”
per node, and the memory manager is responsible for handing out
memory from this allocation. It is the responsibility of each memory

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2333

consumer to only use the memory allocated; overuse can lead to
OOM-kills by the operating system.

Unfortunately, just provisioning memory is not sufficient for
stable operation. The JVM usually performs garbage collection
when it detects high on-heapmemory usage. However, with Photon,
most of the memory usage is off-heap, so garbage collection seldom
occurs. This is problematic if Photon relies on on-heap memory for
parts of its query. One example of this is with broadcasts. Photon
uses Spark’s builtin broadcasting mechanism to share data with
each node in a cluster (e.g., for broadcast hash join). The broadcast
mechanism is implemented in Java, so it requires a copy from off-
heap Photon memory to on-heap Spark memory. However, this
transient memory is not garbage collected frequently, and can lead
to Java OutOfMemory errors if some other Spark code tries to make
a large allocation. We solved this by adding a listener that cleans up
Photon-specific state after the query terminates: this ties Photon
state to the lifetime of a query instead of a GC generation.

5.5 Interaction with Other SQL Features
Photon represents a plan change in a DBR query. Despite this, many
of the non-trivial performance features in both DBR and Apache
Spark are compatible with Photon. For example, Photon can partic-
ipate in adaptive query execution [29], in which runtime statistics
are used to re-partition and re-plan a query at runtime at the stage
boundaries. Photon’s operators implement the interfaces required
to export statistics for such decisions (e.g., the size of shuffle files
and the number of output rows produced at the end of a stage).
Similarly, Photon can take advantage of optimizations such as shuf-
fle/exchange/subquery reuse and dynamic file pruning, all features
that are particularly critical in the Lakehouse context to enable effi-
cient data skipping. Finally, Photon also supports integration with
Spark’s metrics system, and can provide live metrics that appear in
the Spark UI during query execution.

5.6 Ensuring Semantics Consistency
Another interesting challenge we faced was ensuring that Photon’s
behavior was identical to Apache Spark’s. This is because the same
query expression can run in either Photon or Spark depending on
whether some other part of the query was able to run in Photon,
and the results must be consistent. For example, Java and C++ im-
plement integer-to-floating point casts differently, which can lead
to different results in some scenarios. As another example, many
time-based expressions rely on the IANA timezone database [14].
The JVM ships with a particular version of this database, and if Pho-
ton were to use a different version, many time-based expressions
would return different results. To check results against Spark, we
use three kinds of testing: (1) unit tests that explicitly enumerate
test cases for, e.g., SQL expressions, (2) end-to-end tests that explic-
itly compare results vs. Spark on SQL queries, and (3) fuzz tests that
randomly generate input data and compare the results with Spark.
We discuss each below.
Unit tests. We use two kinds of unit tests. In native code, we have
built a unit testing framework for SQL expressions (e.g., upper(),
sqrt(), etc.) that allows specifying input and output values for any ex-
pression in a table: the framework then loads the table into column
vectors, evaluates the expression on all the available specializations

(e.g., no NULLs, with NULLs, no inactive rows, etc.) and compares
the result to the expected output. This also ensures that inactive
rows are not incorrectly overwritten.

We also integrate with Spark’s existing open source expression
unit tests. These tests hook in with our function registry, which
determine whether the test case is supported in Photon. If it is, we
compile a query for the unit test (e.g., SELECT expression(inputs)

FROM in_memory_table) and execute it against both Spark and Pho-
ton, and then compare the results. This gives us the full unit test cov-
erage contributed by the open source community and Databricks.
End-to-end tests. End-to-end tests test query operators by submit-
ting a query against Spark and Photon and comparing the results.
We have a dedicated set of tests that are executed only when Photon
is enabled (e.g., to test out-of-memory behavior or certain Photon-
specific plan transformations), but we also enable Photon on the
full suite of Spark SQL tests for additional coverage. We have found
several “unexpected” bugs this way, e.g., memory corruption caused
by enabling off-heap memory in Spark and producing incompati-
ble/corrupt data from the file scan.
Fuzz tests. A final source of compatibility testing comes from fuzz
testing, in which we test random queries against Spark and Photon.
Our fuzz testing consists of a fully general random data and query
generator as well as surgical fuzzers for specific features.

One specialized fuzz tester we use is for Photon’s decimal imple-
mentation. Photon’s decimal differs in behavior from Spark, in that
it can operate over inputs of different types for performance (in
contrast, Spark always casts its decimal inputs to the output type
first, which can leads to worse performance). This difference leads
to some unavoidable differences in behavior, which our fuzz tester
checks for by using a behavior whitelist.

6 EXPERIMENTAL EVALUATION
In this section, we experimentally demonstrate Photon’s speedups
over DBR. In particular, we seek to answer the following questions:
(1) What query shapes benefit the most from Photon?
(2) How does Photon perform end-to-end vs. our existing engine?
(3) What is the impact of tactical optimizations like adaptivity?

6.1 Which Queries will Photon Benefit?
Photon primarily improves the performance of queries that spend a
bulk of their time on CPU-heavy operations such as joins, aggrega-
tions, and SQL expression evaluation. Queries with these operations
are most impacted by Photon’s differences over DBR: native code,
columnar, vectorized execution, and runtime adaptivity. Photon can
also provide speedups on other operators such as data exchanges
and writes by either speeding up the in-memory execution of these
operators or by using a better encoding format when transferring
data over the network. We do not expect Photon to significantly
improve the performance of queries that are IO or network bound.

We first compare Photon vs. DBR on micro-benchmarks for
queries we expect Photon to benefit: joins, aggregations, expression
evaluation, and Parquet writes. we then show how these improve-
ments translate to end-to-end query performance on TPC-H.
Micro-benchmark Setup.We run our micro-benchmark experi-
ments on a single i3.2xlarge Amazon EC2 instance with 11GB of

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2334

18.9 19.4

5.3

0

10

20

30

Hash JoinR
un

tim
e

(s
ec

) DBR (SMJ,
Default)
DBR (SHJ)

Photon

Figure 4: SELECT count(*)from t1, t2 WHERE t1.id = t2.id.
The join runs 3× faster in Photon with the vectorized hash
table. We compare against DBR’s sort-merge join (SMJ) and
shuffled-hash join (SMJ).

48
63

76

10 11 22

0

50

100

10 Groups 10K Groups 10M GroupsR
un

tim
e

(s
ec

)

DBR

Photon

Figure 5: SELECT collect_list(strcol)GROUP BY intcol. Native
memory management and a fast vectorized hash table pro-
duce an up to 5.7× speedup.

memory for the JVM and 35GB of off-heap memory for Photon1.
The benchmarks run on a single thread.We read from an in-memory
table to isolate the effects of Photon’s execution improvements.
Hash Joins. To benchmark join performance, we compare Spark’s
sort merge join and hash join vs. Photon’s hash join2. We create
two artificial tables with 1GB of integer data each and perform an
inner equi-join over the integer columns.

Figure 4 shows the results. Photon’s vectorized hash table out-
performs DBR by 3.5×, primarily due to better memory hierarchy
utilization by parallelizing loads: an optimization facilitated by
interpreted-vectorized execution. Photon also reduces memory al-
location churn by leveraging the vector buffer pool, leading to
further speedups. Although Photon also uses SIMD for hashing and
key comparison, most joins are memory-intensive, so the improve-
ments to load parallelism during probing have the most impact on
performance.
Aggregations. To demonstrate the benefits of Photon on aggrega-
tion queries, in this benchmark we run a grouping aggregation on
a string column on a varying number of integer groups with the
CollectList aggregation function. This function collects input rows
into an array data type. The DBR implementation of this function
uses Scala collections to perform the aggregation and does not
support code generation, in large part because the Spark SQL code
generation framework is incompatible with aggregation functions
that require variable size aggregation states. Photon uses a custom
vectorized implementation of the expression.

1This is the default setting on this instance type on Photon-enabled clusters.
2Photon does not support sort-merge join, but Apache Spark uses it by default because
its shuffled hash join implementation does not support spilling.

4343 5427

1384

0

2000

4000

6000

Upper() String Expression

R
un

tim
e

(m
s) DBR + ASCII

Opt.
Photon + No
ASCII Opt.
Photon + SIMD
ASCII Opt.

Figure 6: Performance benefits of vectorization and native
code, exemplified by a custom SIMD ASCII check kernel.
The custom kernel provides a 3× speedup over DBR.

0

50

100

Photon DBR

Ti
m

e
(s

ec
)

Compress

IO

Encoding

Figure 7: Benefits of using Photon to write Parquet. Opti-
mized column encoders provide a 2× speedup.

Figure 5 shows the results. Photon outperforms DBR on this
microbenchmark by up to 5.7×. Like the join, Photon benefits from
a vectorized hash table while resolving the groups to aggregate
into. Photon also employs techniques such as memory pooling to
improve performance while evaluating the aggregation expression
itself, by coalescing allocations for lists across groups instead of
managing the state for each group independently.
Expression Evaluation. To show the impact of evaluating expres-
sions in Photon, we ran a benchmark that runs the upper expres-
sion to uppercase a string. Both DBR and Photon special-case the
upper-casing expression for ASCII strings: ASCII strings can be
uppercased using a simple byte-wise subtraction operation, but
general UTF-8 strings require use of a Unicode library that maps
each UTF-8 codepoint to its uppercased equivalent. In Photon the
string ASCII check and the upper-casing kernel both use SIMD.

Figure 6 shows the results. As a baseline, we also show Photon
without specializing for ASCII at all: each string is uppercased
using the ICU [7] library (the same one DBR would use for its UTF-
8 codepath). Photon’s custom SIMD ASCII check and the upper-
casing kernel together contribute to a 3× speedup over DBR, and a
4× speedup over the ICU-based implementation.

Overall, Photon supports over 100 expressions from Apache
Spark. Expression evaluation in Photon benefits heavily from native
code and buffer reuse via the buffer pool, and is especially impactful
in cases where DBR relies on generic Java libraries for computation.
ParquetWrites. Photon supports writing Parquet/Delta files. This
operation is used for creating new tables or appending to existing
ones. DBR performs this operation using the open source Java-based
Parquet-MR library [11]. To compare Photon’s performance on Par-
quet writes vs. DBR, We ran a benchmark that writes a 200M row
Parquet table with six columns (integers, longs, dates, timestamps,
strings, and booleans). These types cover the most popular Parquet

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2335

column encodings [10]. Unlike the other benchmarks, to show the
impact of writing to cloud storage we run this benchmark on a
single-node i3.2xlarge cluster with eight threads and 16 partitions,
with the table stored in S3. Figure 7 shows the result with a break-
down in runtime. Photon outperforms DBR by 2× end-to-end, with
the main speedup coming from the column encoding. This is from
a faster hash table to dictionary encode [5] the string columns, and
also by using optimized bit-packing [12] and statistics computation
kernels. Both DBR and Photon spend roughly the same amount of
time compressing pages and writing to storage.

6.2 Comparison vs. DBR on TPC-H
We now evaluate end-to-end query performance on a cluster using
the queries from the TPC-H benchmark. We ran the 22 TPC-H
queries on an 8-node AWS cluster and one driver node. Each node
is an i3.2xlarge instance with 64GB of memory and 8 vCPUs (Intel
Xeon E5 2686 v4). We ran the benchmark with SF=3000 with the
Delta format, stored in Amazon S3. Figure 8 shows the minimum
time across three runs for all queries, after a warm-up run.

Overall, Photon achieves a maximum speedup of 23×, and an
average speedup of 4× across all queries. Since Photon and DBR use
identical logical plans during execution, to better understand the
source of speedups we separately profiled one run of each query
using a Databricks-internal cluster profiling tool. The profiles show
that speedups predominantly come from the operations discussed
in §6.1: faster joins and aggregations due to the vectorized hash
table, faster expression evaluation, and in some cases, more effi-
cient serialization during shuffles. Most queries are bottlenecked
on either a large join or aggregation.

Q1 shows the largest speedup of all queries—23× faster than
DBR—because it is heavily bottlenecked on Decimal arithmetic.
Photon vectorizes Decimal arithmetic with native integer types.
DBR only uses native integers for decimals with low precision, but
uses infinite-precision Java Decimal for all other operations, leading
to an over 80× speedup on some expressions. Simple scan-and-
aggregate queries such as Q6 exhibit speedups for the same reason;
aggregations in Photon are vectorized by using native kernels.

Q9 is a representative query bottlenecked on a large join (exe-
cuted as a shuffled hash join in Photon). We observe that the join
operator consumes fewer cycles in Photon than in DBR (compared
to both DBR’s shuffled hash join and sort-merge join). Most of this
speedup comes from masking cache miss latency by parallelizing
loads to the hash table, though smaller optimizations like avoiding
copies during hash table resizing also contribute to the speedup.
With these optimizations, Q9 in Photon is dominated by writing
files for data shuffles (50% of the total time).
TPC-DS Performance. As further validation of Photon’s perfor-
mance, the TPC council independently ran the full TPC-DS bench-
mark on DBR with Photon enabled, on the 100TB scale factor. The
data was stored in Amazon S3, and the queries ran on a 256-node
cluster of i3.2xlarge instances on AWS. The full benchmark in-
cludes a power run with all queries run back-to-back, a concurrency
run, and a database update run. As of February 2022, DBR with Pho-
ton holds the TPC world record on the overall benchmark [15, 53].
Photon speeds up TPC-DS for many of the same reasons as TPC-H:
faster expression evaluation, joins, and aggregations.

Configuration Runtime (ms) Data Size (MB)
DBR 31501 1759.6
Photon + No Adaptivity 17324 1715.1
Photon + Adaptivity 15069 763.2

Table 1: Impact of adaptiveUUID encoding inPhoton on arti-
ficial data. Adaptivity reduces the amount of data LZ4 needs
to compress and can reduce spilling.

6.3 Overhead of JVM Transitions
Photon uses the JNI to interface with Spark and also transition
operators to pass data between Spark and Photon. To measure the
overhead of these operators, we ran a simple query that reads a
single integer column from an in-memory table. This shows the
worst case overhead of the transition nodes since the query does
no other work, and Photon must convert all rows from the Photon
representation to the Spark representation. We observed that 0.06%
of the execution time was spent in JNI-internal methods, and 0.2%
of the time was spent in the adapter node feeding into Photon. The
rest of the profile was identical for Photon and DBR: roughly 95% of
the time was spent serializing rows into Scala objects so they could
be processed with a no-op UDF, and the remaining time went into
various Spark iterators. We found no additional overhead from the
column-to-row operation, since Spark must apply this operation
as well. In all, we have not found the JNI or the transition nodes to
be a significant source of overhead, especially when these calls are
amortized via batching.

6.4 Benefits of Runtime Adaptivity
In this section, we run microbenchmarks to show the impact of
adaptivity in Photon. We demonstrate two kinds of adaptivity.
Adapting to Sparse Batches. Photon compacts column batches
before probing hash tables in order to increase memory parallelism.
This feature is adaptive because Photon tracks the sparsity of col-
umn batches at runtime. To illustrate its benefits, we ran TPC-DS
query 24 on a 16-node cluster with and without adaptive join com-
paction. Figure 9 shows the results. Overall, compaction produces a
1.5× improvement compared to probing the sparse batches directly.
In addition, we note that Photon without compaction regresses vs.
DBR: this is a consequence of the vectorized execution model, since
sparse column batches additionally cause high interpretation over-
head in downstream operators after the join. DBR’s code-generation
model does not incur this interpretation overhead by nature, since
the engine processes value tuple at a time, but “inlines” operators
to eliminate overheads. This optimization shows that carefully en-
gineering a vectorized execution engine can also eliminate such
overheads, but requires additional specialization.
Adaptive String Encoding Microbenchmark. Data shuffles are
still a dominant bottleneck in many queries. In addition to consum-
ing network bandwidth, large shuffles also cause memory pressure,
which can lead to spilling and thus reduced performance.

One adaptive mechanism we prototyped in Photon encodes
UUID strings as 128-bit integers. UUIDs are a standardized con-
cept [37] and have a canonical 36-byte string format. They appear

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2336

0

10

20

30

0.E+0

1.E+6

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Sp
ee

du
p

R
un

tim
e

(s
ec

) DBR Photon

Figure 8: TPC-H performance of Photon vs. DBR (SF=3000). Photon speeds up DBR by an average of 4× per query.

118 120

76

0

50

100

150

TPC-DS Q24

R
un

tim
e

(s
ec

) DBR

Photon + No
Compaction
Photon + Join
Compaction

Figure 9: Impact of adaptive join compaction in Photon on
TPC-DS Q24. Compaction allows vectorization to outper-
form code-gen and produces a 1.55× speedup over DBR.

frequently in the data lake, and are commonly generated directly
from Apache Spark as well. Because of their canonical format,
UUIDs can be represented using a compact 128-bit representation.
Photon can detect string columns with UUIDs before writing a
shuffle file and switch to this optimized encoding on demand.

To evaluate this feature, we ran a single-machinemicro-benchmark
that repartitions a dataset with a UUID string column with 50M
rows. We measured the end-to-end execution time and the reduc-
tion in shuffle data volume. All schemes compress the data using
LZ4 compression before writing the shuffle file. Table 1 shows the
results. Overall, we see a modest 15% reduction in end-to-end exe-
cution time on this microbenchmark, primarily from reducing the
amount of data that LZ4 needs to compress. However, the new com-
pression scheme leads to an over 2× reduction in data volume. In
memory-intensive queries, this reduction can avoid spilling data to
disk or causing memory pressure on downstream operators, which
can have an outsized impact on end-to-end performance.

7 RELATEDWORK
Photon builds on a rich lineage of academic and industrial work on
database engine design. Photon’s vectorized execution model was
introduced by MonetDB/X100 [23], and industrial OLAP DBMSes
such as C-Store [51] and others [26, 35] have proved its practicality.

The batch-level adaptivity scheme described in this paper is simi-
lar to micro-adaptivity in the Vectorwise system [47], where queries
adapt at a fine-grained scale to changing data. The position list-
based representation of row filters was concurrently explored by
Ngom et al. [42]: this work reached similar conclusions to our exper-
iments and showed that positions lists outperform byte vectors for
all but the simplest queries. The reliance on SIMD for better perfor-
mance in database operators has also been discussed before [46, 59].
For example, Photon’s hash table contains similar access to patterns

to Polychroniou et al. [46], though our table contains additional
optimizations to fully utilize memory bandwidth.

Several other systems have implemented and evaluated the code
generationmodel, themost notable beingHyPer [41]. Priorwork [34,
50] has also explored this topic, and some systems have experi-
mented with a hybrid approach [36, 40]. Our engine specializes ex-
ecution kernels to common patterns as a form of “offline” code-gen,
but we have observed that code-gen is likely to help for complex
expressions. We consider hybrid approaches future work.

Photon is embedded in the Databricks Runtime, which is based
on Apache Spark [57] and Spark SQL [20]. Several other systems
have explored optimizing SQL query execution within a more gen-
eral MapReduce-style framework [17, 24, 27, 28, 30, 44, 48, 56].
Flare [28] in particular embeds a native execution engine within
Spark, but does not discuss issues such as memory management
and spilling. The Apache Arrow project [2] provides an in-memory
format similar to Photon’s column vectors, and contains a similar
concept of kernels to execute expressions over Arrow buffers.

Photon addresses some of the query processing challenges spe-
cific to the Lakehouse storage architecture [19]. End-to-end effi-
ciency is made possible by also addressing challenges related to data
storage, data management, and efficient file retrieval, which the
Delta Lake [18] storage layer and columnar Parquet file format [4]
enable. Many of the optimizations specific to Parquet and Delta
have been discussed by Abadi et al. [16], e.g., maintaining column
compression from the file format throughout the execution engine.

Finally, Photon was motivated by several long-standing observa-
tions: that hardware is becoming increasingly parallel, I/O speeds
have outpaced the performance of a single core, and optimizing for
the memory hierarchy is critical for performance [22, 25, 33, 39, 43,
52]. These trends will only become important in the future.

8 CONCLUSION
We have presented Photon, a new vectorized query engine for
Lakehouse environments that underlies the Databricks Runtime.
Photon’s native design has solved many of the scalability and per-
formance issues that we had faced with our previous JVM-based
execution engine. Its vectorized processing model enables rapid
development, rich metrics reporting, and micro-adaptive execution
for handling the unstructured “raw” data that is ubiquitous in data
lakes. Our incremental rollout has allowed us to enable Photon for
hundreds of customers and millions of queries, even in scenarios
where the full query is not yet supported. Through standardized
benchmarks and micro-benchmarks, we have shown that Photon
achieves state-of-the-art performance on SQL workloads.

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2337

REFERENCES
[1] 2017. Restrict-qualified pointers in LLVM. https://llvm.org/devmtg/2017-02-

04/Restrict-Qualified-Pointers-in-LLVM.pdf.
[2] 2018. Apache Arrow. https://arrow.apache.org/.
[3] 2021. Apache Impala. https://impala.apache.org/.
[4] 2021. Apache Parquet. https://parquet.apache.org.
[5] 2021. Dictionary encoding. https://github.com/apache/parquet-

format/blob/master/Encodings.md#dictionary-encoding-plain_dictionary--2-
and-rle_dictionary--8.

[6] 2021. Google Protocol Buffers. https://developers.google.com/protocol-buffers/.
[7] 2021. ICU - International Components for Unicode. https://icu.unicode.org/.
[8] 2021. JNI APIs and Developer Guides. https://docs.oracle.com/javase/8/docs/

technotes/guides/jni/.
[9] 2021. OffHeapColumnVector. https://github.com/apache/spark/blob/

master/sql/core/src/main/java/org/apache/spark/sql/execution/vectorized/
OffHeapColumnVector.java.

[10] 2021. Parquet Encodings. https://github.com/apache/parquet-format/blob/
master/Encodings.md.

[11] 2021. Parquet-MR. https://github.com/apache/parquet-mr.
[12] 2021. RLE/Bit-packing encoding. https://github.com/apache/parquet-format/

blob/master/Encodings.md#run-length-encoding--bit-packing-hybrid-rle--3.
[13] 2021. Snowflake Database Storage. https://docs.snowflake.com/en/user-guide/

intro-key-concepts.html#database-storage.
[14] 2021. Time Zone Database. https://www.iana.org/time-zones.
[15] 2021. TPC-DS Result Details. http://tpc.org/tpcds/results/tpcds_result_detail5.

asp?id=121103001.
[16] Daniel Abadi, Peter Boncz, Stavros Harizopoulos Amiato, Stratos Idreos, and

Samuel Madden. 2013. The Design and Implementation of Modern Column-oriented
Database Systems. Now Hanover, Mass.

[17] Sameer Agarwal, Davies Liu, and Reynold Xin. 2016. Apache Spark as a Compiler:
Joining a Billion Rows per Second on a Laptop. https://databricks.com/blog/
2016/05/23/

[18] Michael Armbrust, Tathagata Das, Liwen Sun, Burak Yavuz, Shixiong Zhu, Mukul
Murthy, Joseph Torres, Herman van Hovell, Adrian Ionescu, Alicja undefine-
duszczak, Michał undefinedwitakowski, Michał Szafrański, Xiao Li, Takuya
Ueshin, Mostafa Mokhtar, Peter Boncz, Ali Ghodsi, Sameer Paranjpye, Pieter
Senster, Reynold Xin, and Matei Zaharia. 2020. Delta Lake: High-Performance
ACID Table Storage over Cloud Object Stores. Proc. VLDB Endow. 13, 12 (August
2020), 3411–3424. https://doi.org/10.14778/3415478.3415560

[19] Michael Armbrust, Ali Ghodsi, Reynold Xin, and Matei Zaharia. 2021. Lakehouse:
ANewGeneration of Open Platforms that Unify DataWarehousing andAdvanced
Analytics. CIDR.

[20] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and Matei
Zaharia. 2015. Spark SQL: Relational Data Processing in Spark. In Proc. ACM
SIGMOD (Melbourne, Victoria, Australia). 1383–1394. https://doi.org/10.1145/
2723372.2742797

[21] Benoit Dageville. 2021. Striking a balance with ’open’ at Snowflake.
https://www.infoworld.com/article/3617938/striking-a-balance-with-open-at-
snowflake.html.

[22] Peter A Boncz, Stefan Manegold, Martin L Kersten, et al. 1999. Database ar-
chitecture optimized for the new bottleneck: Memory access. In VLDB, Vol. 99.
54–65.

[23] Peter A Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-
Pipelining Query Execution.. In CIDR, Vol. 5. 225–237.

[24] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst. 2010. HaLoop:
Efficient Iterative Data Processing on Large Clusters. Proc. VLDB Endow. 3, 1–2
(September 2010), 285–296. https://doi.org/10.14778/1920841.1920881

[25] Björn Daase, Lars Jonas Bollmeier, Lawrence Benson, and Tilmann Rabl. 2021.
Maximizing persistent memory bandwidth utilization for OLAP workloads. In
Proceedings of the 2021 International Conference on Management of Data. 339–351.

[26] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, AllisonW. Lee, Ashish Motivala, Abdul Q. Munir, Steven Pelley,
Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. 2016.
The Snowflake Elastic Data Warehouse. In Proceedings of the 2016 International
Conference on Management of Data (San Francisco, California, USA) (SIGMOD
’16). Association for Computing Machinery, New York, NY, USA, 215–226. https:
//doi.org/10.1145/2882903.2903741

[27] J. Dees and P. Sanders. 2013. Efficient many-core query execution in main
memory column-stores. In Data Engineering (ICDE), 2013 IEEE 29th International
Conference on. 350–361. https://doi.org/10.1109/ICDE.2013.6544838

[28] Grégory M. Essertel, Ruby Y. Tahboub, James M. Decker, Kevin J. Brown, Kunle
Olukotun, and Tiark Rompf. 2018. Flare: Optimizing Apache Spark with Native
Compilation for Scale-up Architectures and Medium-Size Data. In Proceedings
of the 13th USENIX Conference on Operating Systems Design and Implementation
(Carlsbad, CA, USA) (OSDI’18). USENIX Association, USA, 799–815.

[29] Wenchen Fan, Herman van Hövell, and MaryAnn Xue. 2020. Adaptive Query
Execution: Speeding Up Spark SQL at Runtime. https://databricks.com/blog/
2020/05/29/adaptive-query-execution-speeding-up-spark-sql-at-runtime.html.

[30] Ionel Gog, Malte Schwarzkopf, Natacha Crooks, Matthew P. Grosvenor, Allen
Clement, and Steven Hand. 2015. Musketeer: All for One, One for All in Data
Processing Systems. In Proc. ACM EuroSys (Bordeaux, France). Article 2, 16 pages.
https://doi.org/10.1145/2741948.2741968

[31] Goetz Graefe. 1990. Encapsulation of Parallelism in the Volcano Query Processing
System. Vol. 19. ACM.

[32] Adrian Ionescu. 2018. Processing Petabytes of Data in Seconds with Databricks
Delta. https://databricks.com/blog/2018/07/31/processing-petabytes-of-data-in-
seconds-with-databricks-delta.html.

[33] A Kagi, James R Goodman, and Doug Burger. 1996. Memory Bandwidth Limi-
tations of Future Microprocessors. In Computer Architecture, 1996 23rd Annual
International Symposium on. IEEE, 78–78.

[34] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo, and
Peter Boncz. 2018. Everything you always wanted to know about compiled and
vectorized queries but were afraid to ask. Proceedings of the VLDB Endowment
11, 13 (2018), 2209–2222.

[35] Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben Vandier,
Lyric Doshi, and Chuck Bear. 2012. The Vertica analytic database: C-store 7 years
later. arXiv preprint arXiv:1208.4173 (2012).

[36] Harald Lang, TobiasMühlbauer, Florian Funke, Peter A. Boncz, Thomas Neumann,
and Alfons Kemper. 2016. Data Blocks: Hybrid OLTP and OLAP on Compressed
Storage Using Both Vectorization and Compilation. In Proceedings of the 2016
International Conference on Management of Data (San Francisco, California, USA)
(SIGMOD ’16). ACM, New York, NY, USA, 311–326. https://doi.org/10.1145/
2882903.2882925

[37] P. Leach,M.Mealling, and R. Salz. 2005. RFC 4122: A Universally Unique IDentifier
(UUID) URN Namespace. https://datatracker.ietf.org/doc/html/rfc4122.

[38] Alicja Luszczak, Michał Szafrański, Michał Switakowski, and Reynold Xin. 2018.
Databricks Cache Boosts Apache Spark Performance. https://databricks.com/
blog/2018/01/09/databricks-cache-boosts-apache-spark-performance.html.

[39] John DMcCalpin et al. 1995. Memory bandwidth andMachine Balance in Current
High Performance Computers. IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) 1995 (1995), 19–25.

[40] Prashanth Menon, Todd C Mowry, and Andrew Pavlo. 2017. Relaxed opera-
tor fusion for in-memory databases: Making compilation, vectorization, and
prefetching work together at last. Proceedings of the VLDB Endowment 11, 1
(2017), 1–13.

[41] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern
Hardware. Proc. VLDB 4, 9 (2011), 539–550. https://doi.org/10.14778/2002938.
2002940

[42] Amadou Ngom, Prashanth Menon, Matthew Butrovich, Lin Ma, Wan Shen Lim,
Todd C. Mowry, and Andrew Pavlo. 2021. Filter Representation in Vectorized
Query Execution. In Proceedings of the 17th International Workshop on Data
Management on New Hardware (Virtual Event, China) (DAMON’21). Association
for Computing Machinery, New York, NY, USA, Article 6, 7 pages. https://doi.
org/10.1145/3465998.3466009

[43] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, Byung-Gon Chun,
and V ICSI. 2015. Making Sense of Performance in Data Analytics Frameworks.
In NSDI, Vol. 15. 293–307.

[44] Shoumik Palkar, James Thomas, Deepak Narayanan, Pratiksha Thaker, Rahul
Palamuttam, Parimajan Negi, Anil Shanbhag, Malte Schwarzkopf, Holger Pirk,
Saman Amarasinghe, et al. 2018. Evaluating End-to-end Optimization for Data
Analytics Applications in Weld. Proceedings of the VLDB Endowment 11, 9 (2018),
1002–1015.

[45] Shoumik Palkar, James Thomas, Anil Shanbhag, Deepak Narayanan, Holger
Pirk, Malte Schwarzkopf, Saman Amarasinghe, and Matei Zaharia. 2017. Weld:
A Common Runtime for High Performance Data Analytics. In Conference on
Innovative Data Systems Research (CIDR).

[46] Orestis Polychroniou, Arun Raghavan, and Kenneth A. Ross. 2015. Rethinking
SIMD Vectorization for In-Memory Databases. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data (Melbourne, Victoria,
Australia) (SIGMOD ’15). Association for Computing Machinery, New York, NY,
USA, 1493–1508. https://doi.org/10.1145/2723372.2747645

[47] Bogdan Răducanu, Peter Boncz, and Marcin Zukowski. 2013. Micro Adaptivity
in Vectorwise. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data. ACM, 1231–1242.

[48] Christopher J. Rossbach, Yuan Yu, Jon Currey, Jean-Philippe Martin, and Dennis
Fetterly. 2013. Dandelion: A Compiler and Runtime for Heterogeneous Systems.
In Proc. ACM SOSP (Farmington, Pennsylvania, USA). ACM, 49–68. https://doi.
org/10.1145/2517349.2522715

[49] Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips, Wenlei Xie,
Yutian Sun, Nezih Yegitbasi, Haozhun Jin, Eric Hwang, Nileema Shingte, and
Christopher Berner. 2019. Presto: SQL on Everything. In 2019 IEEE 35th Inter-
national Conference on Data Engineering (ICDE). 1802–1813. https://doi.org/10.
1109/ICDE.2019.00196

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2338

https://llvm.org/devmtg/2017-02-04/Restrict-Qualified-Pointers-in-LLVM.pdf
https://llvm.org/devmtg/2017-02-04/Restrict-Qualified-Pointers-in-LLVM.pdf
https://arrow.apache.org/
https://impala.apache.org/
https://parquet.apache.org
https://github.com/apache/parquet-format/blob/master/Encodings.md##dictionary-encoding-plain_dictionary--2-and-rle_dictionary--8
https://github.com/apache/parquet-format/blob/master/Encodings.md##dictionary-encoding-plain_dictionary--2-and-rle_dictionary--8
https://github.com/apache/parquet-format/blob/master/Encodings.md##dictionary-encoding-plain_dictionary--2-and-rle_dictionary--8
https://developers.google.com/protocol-buffers/
https://icu.unicode.org/
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
https://github.com/apache/spark/blob/master/sql/core/src/main/java/org/apache/spark/sql/execution/vectorized/OffHeapColumnVector.java
https://github.com/apache/spark/blob/master/sql/core/src/main/java/org/apache/spark/sql/execution/vectorized/OffHeapColumnVector.java
https://github.com/apache/spark/blob/master/sql/core/src/main/java/org/apache/spark/sql/execution/vectorized/OffHeapColumnVector.java
https://github.com/apache/parquet-format/blob/master/Encodings.md
https://github.com/apache/parquet-format/blob/master/Encodings.md
https://github.com/apache/parquet-mr
https://github.com/apache/parquet-format/blob/master/Encodings.md##run-length-encoding--bit-packing-hybrid-rle--3
https://github.com/apache/parquet-format/blob/master/Encodings.md##run-length-encoding--bit-packing-hybrid-rle--3
https://docs.snowflake.com/en/user-guide/intro-key-concepts.html##database-storage
https://docs.snowflake.com/en/user-guide/intro-key-concepts.html##database-storage
https://www.iana.org/time-zones
http://tpc.org/tpcds/results/tpcds_result_detail5.asp?id=121103001
http://tpc.org/tpcds/results/tpcds_result_detail5.asp?id=121103001
https://databricks.com/blog/2016/05/23/
https://databricks.com/blog/2016/05/23/
https://doi.org/10.14778/3415478.3415560
https://doi.org/10.1145/2723372.2742797
https://doi.org/10.1145/2723372.2742797
https://www.infoworld.com/article/3617938/striking-a-balance-with-open-at-snowflake.html
https://www.infoworld.com/article/3617938/striking-a-balance-with-open-at-snowflake.html
https://doi.org/10.14778/1920841.1920881
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1109/ICDE.2013.6544838
https://databricks.com/blog/2020/05/29/adaptive-query-execution-speeding-up-spark-sql-at-runtime.html
https://databricks.com/blog/2020/05/29/adaptive-query-execution-speeding-up-spark-sql-at-runtime.html
https://doi.org/10.1145/2741948.2741968
https://databricks.com/blog/2018/07/31/processing-petabytes-of-data-in-seconds-with-databricks-delta.html
https://databricks.com/blog/2018/07/31/processing-petabytes-of-data-in-seconds-with-databricks-delta.html
https://doi.org/10.1145/2882903.2882925
https://doi.org/10.1145/2882903.2882925
https://datatracker.ietf.org/doc/html/rfc4122
https://databricks.com/blog/2018/01/09/databricks-cache-boosts-apache-spark-performance.html
https://databricks.com/blog/2018/01/09/databricks-cache-boosts-apache-spark-performance.html
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.1145/3465998.3466009
https://doi.org/10.1145/3465998.3466009
https://doi.org/10.1145/2723372.2747645
https://doi.org/10.1145/2517349.2522715
https://doi.org/10.1145/2517349.2522715
https://doi.org/10.1109/ICDE.2019.00196
https://doi.org/10.1109/ICDE.2019.00196

[50] Juliusz Sompolski, Marcin Zukowski, and Peter Boncz. 2011. Vectorization
vs. compilation in query execution. In Proceedings of the Seventh International
Workshop on Data Management on New Hardware. 33–40.

[51] Mike Stonebraker, Daniel J Abadi, Adam Batkin, Xuedong Chen, Mitch Cherniack,
Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth O’Neil, et al.
2018. C-store: a column-oriented DBMS. InMaking DatabasesWork: the Pragmatic
Wisdom of Michael Stonebraker. 491–518.

[52] Wm. A. Wulf and Sally A McKee. 1995. Hitting the memory wall: implications of
the obvious. ACM SIGARCH Computer Architecture News 23, 1 (1995), 20–24.

[53] Reynold Xin and Mostafa Mokhtar. 2021. Databricks Sets Official Data Ware-
housing Performance Record. https://databricks.com/blog/2021/11/02/databricks-
sets-official-data-warehousing-performance-record.html.

[54] Reynold Xin and Josh Rosen. 2015. Project Tungsten: Bringing Apache Spark
Closer to Bare Metal. https://databricks.com/blog/2015/04/28/project-tungsten-
bringing-spark-closer-to-bare-metal.html.

[55] MaryAnn Xue and Allison Wang. 2018. Faster SQL: Adaptive Query Execution in
Databricks. https://databricks.com/blog/2020/10/21/faster-sql-adaptive-query-
execution-in-databricks.html.

[56] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar Erlingsson,
Pradeep Kumar Gunda, and Jon Currey. 2008. DryadLINQ: A System for General-
Purpose Distributed Data-Parallel Computing Using a High-Level Language.. In
OSDI, Vol. 8. 1–14.

[57] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster
Computing. In Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation. USENIX Association, 2–2.

[58] Matei Zaharia, Reynold S. Xin, PatrickWendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, JosephGonzalez, Scott Shenker, and Ion Stoica. 2016. Apache
Spark: A Unified Engine for Big Data Processing. Commun. ACM 59, 11 (October
2016), 56–65. https://doi.org/10.1145/2934664

[59] Jingren Zhou and Kenneth A Ross. 2002. Implementing database operations
using SIMD instructions. In Proceedings of the 2002 ACM SIGMOD international
conference on Management of data. 145–156.

Industrial Track Paper SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2339

https://databricks.com/blog/2021/11/02/databricks-sets-official-data-warehousing-performance-record.html
https://databricks.com/blog/2021/11/02/databricks-sets-official-data-warehousing-performance-record.html
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2020/10/21/faster-sql-adaptive-query-execution-in-databricks.html
https://databricks.com/blog/2020/10/21/faster-sql-adaptive-query-execution-in-databricks.html
https://doi.org/10.1145/2934664

	Abstract
	1 Introduction
	2 Background
	2.1 Databricks' Lakehouse Architecture
	2.2 The Databricks Runtime
	2.3 Example: End-to-end SQL Query Execution

	3 Execution Engine Design Decisions
	3.1 Overview
	3.2 JVM vs. Native Execution
	3.3 Interpreted Vectorization vs. Code-Gen
	3.4 Row vs. Column-Oriented Execution
	3.5 Partial Rollout

	4 Vectorized Execution in Photon
	4.1 Batched Columnar Data Layout
	4.2 Vectorized Execution Kernels
	4.3 Filters and Conditionals
	4.4 Vectorized Hash Table
	4.5 Vector Memory Management
	4.6 Adaptive Execution

	5 Integration with Databricks Runtime
	5.1 Converting Spark Plans to Photon Plans
	5.2 Executing Photon Plans
	5.3 Unified Memory Management
	5.4 Managing On-heap vs. Off-heap memory
	5.5 Interaction with Other SQL Features
	5.6 Ensuring Semantics Consistency

	6 Experimental Evaluation
	6.1 Which Queries will Photon Benefit?
	6.2 Comparison vs. DBR on TPC-H
	6.3 Overhead of JVM Transitions
	6.4 Benefits of Runtime Adaptivity

	7 Related Work
	8 Conclusion
	References

